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1. INTRODUCTION 

Atmospheric temperature profiles are computed from Nimbus 5 data from 

a combination of experiments onboard the satellite. Under optimum condi- 

tions the mast accurate satellite-derived profile is one which makes use of 

the Infrared Temperature Profile Radiometer (TTPR), the Nimbus-F, Microwave 

Spectrometer (NFMS), and the Selective Chopper Radiometer (SCR). Under 

certain conditions an abbreviated solution may be used such as a combination 

between the NEMS and the SCR experiments (Solution 1) or the ITPR and SCR 

experiments (Solution 2). If all consistency checks are satisfied in the 

development of the ITPR+SCR and NEMS+SCR profiles, an ITPR+NEMS+SCR (Solu- 

tion 3) profile is determined. 

Previous studies comparing Nimbus 5 temperature profiles with radiosonde 

profiles indicated that reasonable temperature cross sections could be de- 

veloped using the satellite-derived information. Smith and Woolf (1974) 

found that standard deviations between radiosonde observations (RAOB) and 

Nimbus 5 temperatures, on the basis of cross section analyses, were a max- 

imum in the low troposphere below 850 mb and near the tropopause with mean 

deviations of 2.6'C and 3.6OC, respectively. In the mid-troposphere (700 

to 400 mb), the mean standard deviation between ITPR and RAOB temperatures 

was approximately 1.6'C. Temperature gradients evaluated along the orbital 

track proved more accurate than individual temperatures. Gradient errors 

of 1.7 and 1.8°C/301at were found in the lower and upper troposphere. Smaller 

errors in the gradient of temperature rather than in individual temperatures 

were due to an apparent bias in the Nimbus temperature soundings at similar 

levels. For example, large differences between the RAOB and Nimbus tempera- 

tures were found consistently near the tropopause due to the satellite re- 

duction technique which makes use of climatological radiance data to obtain 

the initial minimum information solution in determining the profile. 

Cross sections of thermal and geostrophic winds were computed from 

satellite-derived cross sections of temperature by Smith and Woolf (1974), 

and by Shen, Smith, and Woolf (1975) along the Nimbus orbital track. Both 

studies produced encouraging geostrophic wind fields developed from the 

satellite-derived thermal fields. In particular, jet stream maximums were 

defined and agreed better with the apparent double jet indicated in satel- 

lite photographs than did an analysis based on RAWIN data only. 

Use of satellite-derived temperature profiles to develop geostrophic wind 

fields has been explored on a hypothetical basis by Togstad and Horn (1974) in 



a study which examined the influence of sensor error and distance over which 

the gradient was determined on the derived geostrophic wind field. It was 

found that the use of a 2Olat distance to evaluate the temperature gradient 

provided the greatest resolution without undue problems due to sensor 

inaccuracies in the evaluation of specific temperatures. Detail in the 

pattern of geostrophic wind was gradually lost as the distance increased 

over which the horizontal gradient was evaluated. In addition, maximum wind 

values decreased from those determined over smaller gradient distances. The 

horizontal gradient of temperature evaluated over 4Olat produced a satellite- 

derived geostrophic wind field which was much like that depicted using RAWIN 

data. 

The development of a geostrophic wind profile or cross section requires 

a tie-on wind somewhere in the profile to which thermal winds between layers 

can be added. Smith and Wolf (1974) appear to use 1000 mb while Togstad and 

Horn used 700 mb. Duncan and Kays (1974) suggest that the tie-on wind might 

be in the mid troposphere, perhaps a 500-mb wind forecast. Without the tie-on 

wind the thermal wind buildup will produce a relative wind profile only. 

Studies of winds derived from ATS cloud vectors provide an encouraging 

source of tie-on winds in data-sparce areas. Hubert and Whitney (1974) and 

Poteat (1973) indicate low-l.evel winds derived from cloud motion and high- 

level winds derived by cirroform cloud motion are reasonably representative 

of the actual wind field at cloud level. If the cloud level can be further 

specified by measuring cloud-top temperatures to more accurately place the 

observed cloud features being tracked, even better tie-on wind values may 

be determined. 

The second Atmospheric Variability Experiment (AVE II) undertaken by 

NASA was run for a 24-h period in May 1974. Its purpose was to provide data 

to study short-period variability of meteorological phenomena using the 

conventional rawinsonde network east of 105OW Longitude from soundings at 

3-h intervals. During this time period, two orbits of Nimbus 5 passed across 

the AVE II network. The first overpass occurred at approximately 1700 GMT on 

11 May 1974 with the second overpass occurring at 0600 GMT on 12 May. The 

presence of ITPR and RAOB vertical temperature profiles taken at approximately 

the same time provide an opportunity for a comparison between the two data 

sources. 



When AVE II was run in May 1974, the Nimbus 5 radiometer systems had 

been aloft almost 2 l/2 years. By this time the ITPR scan mirror drive had 

failed, and the ITPR radiometer was operating in the nadir mode only. This 

confined the sounding points to positions' along the orbital track. Although 

the nadir mode of operation severely limits the area of coverage for temp- 

erature profiles, it still permits the construction of atmospheric tempera- 

ture cross sections along the orbital track. 

In this study, the temperature differences between Nimbus 5 and radio- 

sonde soundings will be evaluated along the cross section of each orbit 

over the AVE II area. Differences between ITPR and RAOB temperature grad- 

ients will be evaluated in the cross section, and the corresponding geo- 

strophic wind differences illustrated. A tie-on wind at 500 mb will be 

used to develop the geostrophic wind field. This level was chosen primarily 

because it resulted in a minimum absolute error since maximum gradient 

errors occur at extreme ends of the thermal wind buildup. 

The Nimbus 5 sounding system provides total liquid water for each sound- 

ing. The total liquid water amounts determined from the Nimbus 5 ITPR 

experiment over the AVE II area are compared with those determined from 

radiosonde soundings. Such a comparison has previously been made over the 

AMTSX area by Shen, Smith, and Woolf (1975) on a day-by-day basis. Generally, 

they found fair agreement between values of total liquid water obtained 

from ITPR and RAOB data although the ITPR amounts were slightly less than 

the RAOB totals. 

In addition to the ITPR data and the computed geostrophic winds, temp- 

erature mapping of the surface and/or cloud tops can be accomplished using 

the 11.5 micrometer sensor of the THIR experiment. Under ideal conditions, 

this will provide contour maps of the cloud tops as reflected in their 

temperature field. Cloud-top temperature mapping and implicit cloud-top 

heights are briefly examined in this study using grid print maps of 

1:10,000,000 and 1:2,000,000 scale. THIR equivalent black body temperatures 

of the surface determined from the 1:10,000,000 mapping data are compared 

with shelter temperatures. 



2. THE DATA SOURCES 

The AVE II data set consisted of rawinsonde data acquired at 3-h intervals 

from 1200 GMT on 11 May 1974 to 1200 GMT on 12 May 1974 for all the United 

States radiosonde stations east of 105OW Longitude. The data were processed 

at each contact of the radiosonde baroswitch by techniques described by Fuelberg 

(1974). Twenty-five mb data from the special rawinsonde data set have been 

published by Scoggins and Turner (1974). Because of the more frequent time 

periods in the AVE data, near simultaneous data from satellite and RAOB sources 

occur. Actual spatial separation between the Nimbus 5 sounding points and 

RAWIN soundings were less than 2'1at and averaged 1.2Olat on the daytime orbit 

(69321, and 1.8'1at on the nighttime orbit (6939). 

Comparisons between the Nimbus 5 and the RAOB-measured temperatures were 

carried out by interpolating the RAOB temperature values at levels corresponding 

to those at which the Nimbus 5 sounding temperatures were determined. This 

was accomplished by making a temperature analysis on constant pressure maps 

at the levels corresponding to the ITRR temperature levels--920, 850, 700, 500, 

400, 300, 250, 200, 150, and 100 mb. In all cases this reduced the difference 

between the individual RAOB temperature profiles and the satellite temperature 

profiles. 

The Nimbus 5 soundings were processed by The Goddard Institute of Space 

Sciences and p'rovided by NASA in reduced form which included solutions from 

the ITPR+SCR (Solution l), NEMS+SCR (Solution 2) and ITRR+NEMS+SCR (Solution 

3) * Comparisons between RAOB and Nimbus 5 soundings were made using Solution 

3 profiles when available. Ten of the twelve soundings which fell in the 

AVE II area were generated using the Solution 3 technique, while the remaining 

two Nimbus 5 profiles were generated using Solution 2 techniques. Details of 

the Nimbus 5 sounding reduction techniques have been described by Smith et al. -- 
(1974). 

Mapping of surface temperatures was accomplished in this study using the 

11.5 micrometer channel of the THIR experiment. Grid print maps of temperature 

on Mercator projections of 1:10,000,000 and 1:2,000,000 scales were provided 

by NASA over the AVE area. The 1:10,000,000 maps were used to determine general 

cloud-top temperatures over large regions as well as to compare TBIR temperatures 

with reported shelter temperatures in clear areas. The 1:2,000,000 mappings 

were used primarily to examine small areas of particular interest. 

4 



ATS III photographs as well as supportive National Weather Service infor- 

mation were used to define the overall meteorological situation. Service C 

and A teletype data as well as radar summaries including representative echo 

top heights were used to further define the synoptic situation and'convective 

conditions. In addition, selected radar scope photographs at individual 

stations were used for correlation with cloud-top temperatures. 
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3. SYNOPTIC FEATURES 

In choosing a time to conduct the data collection phase of AVE II, it 

was desirable to have a synoptic situation with a broad spectrum of metecro- 

logical phenomena occurring. In particular, it was desirable to have an 

advancing cold front with associated frontal weather, convective activity in 

the form of thunderstorms, stratiform cloud cover over some of the area, 

and a significant region which was free of clouds. About equal amounts of 

skill and luck went into the decision to initiate the 24-h experiment at 

1200 GMT on 11 May 1974. Fortunately, all desired conditions were observed. 

The upper-level flow had been dominated by a trough over the western 

United States for several days prior to the experiment. On May 10 the 

southern end of the upper-level trough separated from the main trough and 

began a slow northeastward drift as a cut-off low. By the time the AVE II 

observation period began, this upper-level low was approaching the Gulf 

Coast at the southern end of the AVE II network, while a cold front at the 

surface was advancing toward the western boundary of the network. At the 

first observation period, 1200 GMT on 11 May 1974, the frontal system which 

had been advancing from the west had moved into the western part of the 

network and extended southward from a low center over Minnesota through 

northern Missouri, central Oklahoma, and into northwest Texas. A strong 

southerly flow of warm, moist air was taking place over the eastern Gulf 

Coast associated in part with the surface reflection of the upper-level low 

now in the northern Gulf of Mexico. A retreating cold air mass covered the 

northeastern portion of the United States. 

By midday on 11 May the eastward moving cold front had moved well into 

the AVE II network (see Fig. 1) and was accompanied by extensive cloud cover 

along the frontal boundary with irnbedded rain showers and limited thunderstorm 

activity. The southern low pressure center had moved over the Gulf Coast 

bringing widespread cloud cover and rain. The ATS III photograph taken at 

1800 GMT on 11 May, and shown in Fig. 2a, reveals the extent of cloud cover 

present over the eastern United States. The clearing trend behind the frontal 

band is evident in the central United States and the cyclonic configuration 

of the cloud mass associated with the upper-level low over the central Gulf 

Coast is seen dominating the southern portion of the AVE network. 



a) Surface d) 500 mb 

b) 850 mb 

cl 700 mb 

e) 300 mb 

f) 200 mb 

Fig. 1. Surface and constant pressure analysis of the synoptic situation at 
1800 GMT on 11 May 1974. The Nimbus 5 orbital track and associated 
ITPR data points for Orbit 6932 are shown on the charts. 



a) 1800 GMT on 11 May 1974 

b) 1300 GMT on 12 May 1974 

Fig. 2. ATS III photographs of the eastern United States showing the 
AVE II data area. 
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As the experiment progressed, the cold frontal system moved eastward 

while the upper-level low in advance of the cold front moved northeastward. 

By the morning of the 12th, the frontal band and the cloud mass associated 

with the northward moving low had merged into an extensive cloud shield over 

the eastern United States. This is illustrated in the ATS III photograph 

shown in Fig. 2b taken at 1300 GMT on 12 May after the end of the observa- 
tignal period. During the period of AVE II, the central part of the data 

network experienced a clearing trend as the frontal system moved eastward. 

Orbit 6932 of the Nimbus 5 satellite passed over the AVE II network from 

1711 to 1717 GMT on 11 May only slightly before the actual release time of the 

radiosonde balloons from the surface stations. The orbital track and the 

ITPR sounding points are illustrated on the 1800 GMT constant pressure charts 

shown in Fig. 1. The orbital track itself lies essentially along the trough 

line being slightly to the west of the trough at lower levels and slightly east 

of the trough in the upper troposphere. The orbit crossed the frontal zone 

between sounding points 83 and 84. Isotherms were almost normal to the orbital 

track throughout the troposphere in the northern half of the orbit, while'along 

the southern portion of the orbital track the isotherms tended to parallel the 

track in the cold pool of air associated with the low pressure center over 

Mississippi. 

Orbit 69.39 passed over the AVE II network between 0613 and 0619 GMT on 

12 May. By this time the cold front at the surface had moved to the Texas Gulf 

Coast and the orbital track lay almost entirely within the region bounded by 

the surface cold front. The constant pressure charts for 0600 GMT and the 

associated track of Orbit 6939 are illustrated in Fig. 3. The ITPR data points 

lie to the west of the trough line in cloud-free air with the exception of the 

northern two points which occur near the occluded frontal low over Lake Superior. 

For the most part, the orbital track is perpendicular to the isotherms as well 

as the geostrophic flow indicated by the contour field. 

The distribution of the total liquid water across the AVE II network at the 

time of the satellite overpasses was considered typical of the prevailing 

synoptic situation. Figure 4 illustrates the distribution of total precipitable 

water as determined from radiosonde observations at the time of each orbit. At 

1800 GMT the satellite track extended from a zone of maximum precipitable water, 

about 4.5 cm, across the frontal zone and into a zone of low precipitable water, 

about 1.5 cm. By 0600 GMT the drier polar air dominated the region covered by 

the track of Orbit 6939 reducing the range of precipitable water amounts at the 

9 



a) Surface 

b) 850 mb 
e) 300 mb 

f) 200 mb 
c) 700 mb 

situation at 
Fig. 3. Surface and constant pressure 

analysis of the synoptic . 

0600 GMT on 12 May 1974. The Nimbus 5 orbital tm;tr;;d assoczated 

ITP'R data points for Orbit 6939 are shown on the 
. 
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a) 1800 GMT on 11 May 1974 

2. 
?* 
3. 

b) 0600 GMT on 12 May 1974 

Fig. 4. Total precipitable water (cm) determined from the 
radiosonde data. 
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ITRR soundings points along the track. At both times, the moist tongue 

extended northward from the Gulf of Mexico in front of the cold front and 

across the warm front into the retreating polar air. A maximum of precipi- 

table water at both observation times was associated with the northward 

drifting low center in front of the polar frontal zone. 

Isolines of echo tops were analyzed over the AVE II network using 

National Weather Service radar summaries and are illustrated in Fig. 5 for 

the two time periods coincidental with the Nimbus 5 orbits over the network. 

Near Orbit 6932 at 1735 GMT, Fig. 5a, most echo tops along the frontal zone 

were on the order of 30,000 ft (9100 m) while echo tops associated with the 

low over the Gulf Coast ranged from 35,000 ft (10,670 m) in southern Missi- 

ssippi to 45,000 ft (13,720 m) in the Gulf of Mexico off the Florida pan- 

handle. Along the orbital track itself, only the southern portion contained 

any significant activity with reporting echo tops ranging from 20-30,000 ft 

(6100-9100 m). Using the 0530 GMT radar summary charts corresponding to 

Orbit 6939, significant areas of deep convection were present over the 

southeastern United States (Fig. 5b) with tops ranging from 30-50,000 ft 

(9100-15,250 m). This activity, however, was well east of the track for 
Orbit 6939. Along the orbital track itself, only limited activity is indi- 

cated on the basis of the radar charts and this is confined to the northern 

part of the track in the vicinity of ITPR sounding points 102 and 103. 
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a) 1735 GMT (1800) on 11 May 1974 

b) 0530 GMT (0600) on 12 May 1974 

Fig. 5. Analysis of radar echo tops as reported in the National 
weather Service radar summaries. Isolines of cloud tops 
are labeled in thousands of feet. Dashed lines delineate 
the general boundary of the radar echo regions. 
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4. THIR CLOUD TOP MAPPING 

Temperature mapping of the surface and/or cloud tops can be accomplished 

using the 11.5 micrometer sensor of the THIR experiment if, among 'other things, 

it is assumed that the surfaces emitting the radiation received by the radio- 

meter are radiating as if they were black bodies. From a practical aspect, 

the emissivity of clouds and particularly that of middle- and high-level clouds 

may differ considerably from unity (Platt, 1975; Allen, 1971). In many instances 

it is also possible that the field of view of the radiometer is not completely 

filled by a uniform temperature field. This would be the case with convective 

towers, or with scattered or broken cloud conditions where more than one 

emitting layer was contributing to the total radiation received by the radiometer. 

If it is assumed that the problem of non-unity emissivity and multiple layer 

sources can be temporarily disregarded, a map of the cloud and ground temperatures 

can be produced. If the temperature profile is known, cloud temperatures con- 

verted to cloud heights can be used to obtain a three-dimensional picture of 

the cloud-top distribution. 

Using the 1:10,000,000 grid print maps on a Mercator projection, the 

temperature field derived from 11.5 micrometer data was analyzed for the south- 

eastern portion of the United States during the orbits crossing the AVE II region. 

Comparison of the temperature field on 11 May (Fig. 6) with the cloud distribution 

shown in the ATS III photograph for the AVE area (Fig. 2a) indicates the general 

relationship that would be expected between cloud areas and cold radiation 

temperatures. The main mass of clouds in the central and southeastern part of 

the United States is,associated with cloud-top temperatures on the order of 210 

to 230 K. Although the exact height correlation with temperature varies from 

region to region on the map, the 250 K isotherm corresponds approximately to a 

height of 30,000 ft (9100 m), 230 K to 34,000 ft (10,360 m), and 210 K to 

45,000 ft (13,700 m). Using this information, cloud-top temperatures can be 

relabeled as cloud-top contours. The extension of the main cloud mass from 

Illinois through Oklahoma and Texas is characterized by scattered and broken 

cloud cover at all levels with resulting non-representative cloud-top temperatures 

along this axis of the cloud band associated with the cold front in the central 

United States. 

A comparison of the distribution of cloud-top temperature and, in particular, 

the associated heights with the contour chart of maximum echo tops on 11 May shown 

in Fig. 5a, reveals that the implied height field from the radiation data 

corresponds well with the radar-echo top information. In particular, echo tops 

of 30,000 ft (9100 m) in Illinois agree favorably with implied cloud-top heights 
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based on the radiation data. The echo height approaching 45,000 ft (13,700 m) 

off the Florida panhandle agrees well with the implied cloud tops of 45-50,000 

ft (13,700-15,250 m) determined from radiation data in the 1:10,000,000 

mapping. 

By use of the 1:2,000,000 grid print mapping, the portion of the tempera- 

ture field enclosed in the box over southern Illinois and eastern Missouri 

in Fig. 6 was reanalyzed and the result shown in Fig. 7. The corresponding 

area in the ATS III photograph (Fig. 2a) can be located by referring to the 

outlines of states. The great detail and small-scale variation in the 

temperature field apparent in Fig. 7 is not present in the 1:10,000,000 mapping 

shown previously. The warm tongue, A-B, present in the southeastern portion 

of Fig. 7 appears to be associated with the "clear" zone in the same area 

visible in the ATS photograph. In the far northwestern portion of Fig. 7 the 

warm radiation temperatures coincide with the clear sky conditions in the 

northwestern portion of the AVE II area. Between these two identifiable zones 

is an area of extensive cloud cover associated with the frontal system extend- 

ing through this portion of the United States. The colder cloud-top tempera- 

tures can be relabeled as cloud heights by using the Peoria and Salem, Illi- 

nois, soundings. The areas with temperatures of 228 K and 232 K correspond to 

radiating cloud tops at approximately 33,800 ft (10,300 m) and 32,100 ft 

(9800 m), while the 224 K temperatures are associated with clouds at approxi- 

mately 35,300 ft (10,750 m). Using these temperature-height relationships, 

the band of cold temperatures, C-D, northwest of the clearer zone corresponds 

to a cloud line with tops approximately 32-34,000 ft (9750-10,350 m). Behind 

this cloud band is a second warm band, S-F, followed by another cloud band, 

G-H, with tops about the same as that found further east. In fact, three 

cloud bands, C-D, G-H, and I-J, can be identified in the cloud-top temperature 

field before the main clear zone to the west is encountered. The cold tempera- 

tures in the far southeastern portion of the chart correspond to heights near 

35,200 ft (10,730 m) and are associated with the low along the Gulf Coast. 

Figure 7 is characterized by a cloud field which is predominantly cirroform 

with embedded thunderstorm systems associated with the cold front. The associ- 

ated surface data and the radar presentation at St. Louis are shown in Fig. 8. 

The radar presentation shows a line of activity extending northeast-southwest 

across St. Louis with rain showers and thunderstorm activity reported in the 

surface data. Some indications of the second cloud band interpreted from 

the radiation data are also apparent in the radar display. The two surface 

stations reporting thunderstorm activity in the past hour, St. Louis and Decatur, 
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Fig. 6. TRIR 11.5 micrometer equivalent black body temperature analysis for 1711 GMT (Nimbus Orbit 
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Fig. 7. THIR 11.5 micrometer equivalent black body temperature 
analysis using the 1:2,000,000 grid print mapping at 1711 GMT 
on 11 May 1974 for the region covered by the St. Louis, Missouri, 
radar. Dashed and dash-dot lines designate warm and cold 
temperature bands. 
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Fig. 8. St. Louis, Missouri, radar echo presentation and accompanying 
surface data at 1700 GMT on 11 May 1974. 
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Illinois are near regions of cloud-top maxima as interpreted from the radiation 

data and lie within the echo line observed from the St. Louis radar. Other 

cold spots in the THIR mapping do not necessarily occur coincidentally with 

radar echoes although as previously pointed out many do occur in lines which 

might be interpreted as bands of convective activity. 

Accurate temperature mapping of the cirroform cloud cover present in Fig. 7 

is complicated by the problem of varying emissivities for cirroform clouds. 

Emissivity measurements of cirrus clouds indicate that although dense patches 

or areas of cirrus have an emissivity approaching unity, a high percentage 

of cirrus is characterized by a much lower emissivity. For example, Platt 

(1975) found that the mean emissivity of jet stream cirrus was 0.28, while 

Allen (1971) estimated cirroform clouds to have an emissivity of about 0.35. 

In both studies there was an almost linear relationship between the number of 

cases and emissivity values. If it is assumed that the cirrus coverage is 

fairly uniform in Fig. 7, but that the actual emissivity varies across the 

cloud layer such as might be expected with embedded thunderstorms, an induced 

temperature gradient will be observed which has nothing to do with cloud-top 

height. If a second cloud layer is present under the cirrus with tops at 

approximately -lO°C (about 17,000 ft or 5200 m), an assumption not out of line 

with surface cloud reports and radiosonde humidity values, an emissivity of 

the cirroform clouds of 0.35 would increase the apparent cloud-top temperature 

to 253 K or about that temperature observed for the warmer cloud-top tempera- 

tures. In reality, knowing the temperature field as depicted by the THIR 

radiometer is only a first step in defining the cloud-top heiqht distribution. 

In cases such as presented here with extensive cirrus, cloud emissivities and 

coverage information are necessary additional ingredients which must be known 

before top contours can be adequately reproduced. 

By the time Orbit 6939 on 12 May occurred, the major cloud systems had 

moved to the eastern portion of the United States leaving the central United 

States free from significant cloud cover. The temperature field derived from 

the 1:10,000,000 mapping of the 11.5 micrometer channel of the THIR experiment 

is presented in Fig. 9. The ATS III photographs (Fig. 2) reveal that the 

main cloud mass has a predominant north-south alignment. Over northern 

Florida the cloud tops should be at approximately 39,000 ft (11,900 m) based 

on the 220 K temperature. Convective tops slightly in excess of 50,000 ft 

(15,250 m) are indicated from the radar data (Fig. 5b). The 1:2,000,000 

19 



N 
0 

I 
I 

lb- I 
-W r- --___ -a.,,-T;--- 

I 
: --- ‘-%-’ t. --ma_. 

I 
380 460 46d 

: 

520 450 I,- 

510 : r----- 1 zsz-- 7 WJ 

'. ' 57 

10 

----"'--56 
Q 

----54 l 

Oo54 550540 

I 5o n f30 460 @ “‘k 

F /” 

1 576 n 1 53, _ n 

59 
66 9; 

280. 

'93 
: 68 I 0 

'Xl 
68(m)--- -7or; 70, 

6 ,-gose 
P 

Cloud Yodel 

: 

Low Scattered 

Middle Broken 

0 Hiyh Overcast fl 270' 
I 28?P 

Fig. 9. TJJIR 11.5 micrometer equivalent black body temperature analysis for 0610 GMT (Nimbus Orbit 
6939) on 12 May 1974. The analysis is from the 1:10,000,000 grid print map. Surface 
reports of temperature and cloud cover are for 0600 GMT. Representative cloud top heights 
corresponding to temperatures have been determined from associated RAOB data and are 
labeled on appropriate isotherms. 



mapping data in this region indicate minimum cloud-top temperatures'on the 

order of 209 K which at unit emissivity would correspond to top heights of 

approximately 46,000 ft (14,000 m), still somewhat below that indicated by 

the radar observations. Two factors probably contribute to the difference 

in THIR inferred heights and radar-top heights, viz, the relatively small 

size of the convective tops or turrets may not fill the area from which the 

resultant cloud-top temperature was determined, or the emissivity of the cloud 

top was considerably different from unity. The latter would be true if the 

upper cloud layer was primarily cirroform but does not seem likely if 

actual convective cloud tops dominated in the area; a combination of both 

effects probably are present. Over much of the remainder of the major cloud 

mass, inferred cloud-top heights from the THIR data agree reasonably well 

with radar-echo tops when viewing angle and area smoothing are considered. 

It is of interest to reexamine the St. Louis area using the data from 

Orbit 6939. The THIR, 11.5 micrometer film strip over the AVE area is 

shown in Fig. 10 with the area to be illustrated in the synoptic and radar 

data as well as in the 1:2,000,000 mapping of the 11.5 micrometer THIR data 

outlined. A band of clouds can be seen extending southwestward through the 

small area to be considered. Figure 11 shows the synoptic reports over 

the region as well as the radar display at 0600 GMT. In this case the radar 

return seemed to be primarily ground clutter and anamolous propogation. ,A 

subsynoptic feature in the form of a wind shift line appeared to be moving 

through the area and is reflected in the wind shift reported at Springfield, 

Illinois. What cloud cover that did exist was primarily at Quincy, Illinois, 

in the form of an overcast middle cloud layer and the remains of thunderstorm 

activity at Peoria, Illinois. 

It becomes apparent when the THIR temperature field is compared in detail 

with the synoptic reports, that the major percentage of the cloud band so 

apparent in the THIR data shown in Fig. 12 misses all the synoptic stations 

with the exception of Peoria, Illinois. St. Louis lies just on the eastern 

side of the band and remains clear for several hours after the time of Orbit 

6932. The overcast reported at Quincy, Illinois, is west of the THIR cloud 

band but is in a region which is slightly cooler than the surrounding area. 

The Service A reports for Quincy indicate that the station went from clear 

at 0400 GMT to a layer of scattered clouds at 10,000 ft (3000 m) and broken 
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Fig. 10. Nimbus 5, 11.5 micrometer, THIR film for 12 May 1974 at 
gpproximately 0610 GMT. The dashed box in the center of 
the picture outlines the geographic area presented in 
Figs. 11 and 12. 
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Fig. 11. Accompanying surface data at 0600 GMT on 11 May 1974 for the 
region illustrated in Fig. 12. Dashed echo outline delineates 
ground clutter rather than convective echoes. 

I 
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Fig. 12. TJJIR 11.5 micrometer equivalent black body temperature 
analysis using the 1:2,000,000 grid print mapping at 0610 
GMT on 12 May 1974 for the region covered by the St. Louis, 
Missouri, radar. 
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at 25,000 ft (7600 m) at 0500 GMT, to 12,000 ft (3650 m) overcast at 0600 GMT 

and back to scattered by 0700 GMT. It is possible that the overcast reported 

at this station is not associated with the main cloud mass but with a smaller 

patch of clouds west of the main cloud mass. Springfield, which reported 

clear at the time of the THIR data , went to a middle scattered condition at 

0700 GMT with bases reported at 12,000 ft (3650 m). 

If it is assumed that the middle cloud layer is overcast in the vicinity 

of the coldest cloud-top temperatures and that the emissivity of the clouds 

approaches unity, the tops are at approximately 17,000 ft (5206 m) MSL. 

Actually, there is a considerable north-south temperature gradient causing 

the 260 K isotherm to be close to 20,000 ft (6100 m) in the southern end 

of the line and nearer 14,000 ft (4250 m) at the northern end. Using the 

apparent radiation temperature of the background, as determined from the 

clear sky conditions in the area and a cloud-top temperature of 260 K, the 

effect on the apparent cloud-top temperature by going from overcast to 0.5 

coverage is to increase the apparent cloud temperature to apprxoimately 270 K, 

and with 0.2 cloud cover to an effective temperature of 275 K. Since the area 

in question is near the orbital track these are probably realistic estimates 

of the effect of changing cloud cover on apparent temperature. Since the 

emissivity of middle clouds tends to be fairly high (Allen, 1971) the cloud 

height corresponding to the height of the 260 K isotherm is probably a good 

estimate of cloud tops. 

In summary, comparisons between the THIR patterns and the cloud field as 

seen in the satellite photographs and radar presentations revealed about 

what would be expected. In general, there was good agreement between the 

cloud pattern and cloud top estimates based on the THIR data and radar cloud , 
top reports. Specific problems in the interpretation of the THIR temperature 

data stemmed from the possibility of variable emissivities of cirroform clouds 

and features below the resolving power of the 1:2,000,000 grid print mapping. 

Specific features in the radar patterns were found to be only loosely 

associated with the pattern of temperature at the cloud top as portrayed 

by the 1:2,000,000 THIR data. 
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5. POINT COMPARISON OF ITPR AND THIR DATA WITH SURFACE INFORMATION 

Comparisons of THIR radiometer temperature with surface shelter temperature 

were carried out using the 1:10,000,000 grid print maps on a Mercator projection. 

These comparisons were made if the radiometer data points were over surface 

reporting stations and if the stations were reporting clear sky conditions at 

the time of the satellite overpass. The restrictions of clear sky conditions 

as well as data points coincident in space with surface stations greatly reduced 

the number of points that could be compared directly. The AVE II area experienced 

a clearing trend during the observation period such that more nighttime comparison 

points were available than daytime points. 

The results of the point-by-point comparison are presented in Fig. 13. 

Here the points from Orbit 6932 are plotted as X's while those from Orbit 6939, 

the nighttime case, are plotted as circles. Typically the temperature compari- 

sons for the daytime orbit averaged about 9C warmer than the corresponding 

shelter temperature while nighttime comparisons over the same area averaged about 

4C colder than the corresponding shelter temperature. It is also of interest 

to note the scatter of data points associated with each orbit. During the 

daytime orbit the scatter is quite large ranging from radiometer temperatures 

18C too warm to 5C too cold with essentially no trend in differences versus 

temperature. On the nighttime orbit the scatter of the data points is much less 

than observed on the daytime orbit, and a rather uniform difference of approxi- 

mately 4C is noted over the entire temperature range. The extreme differences 

between radiometer and shelter temperatures in this latter case ranged from 

approximately 2 to 1OC. 

Interestingly, when the ITPR surface data points are plotted on the same 

chart (@ for Orbit 6932 and13 for Orbit 69391, the points are clustered in 

with the 1:10,000,000 data points. With two exceptions, differences on the 

daytime orbit were on the order of about 5C too warm; while on the nighttime 

orbit, ITPR surface temperatures were approtimately 3C too cool. The two major 

exceptions occurred at data points 81 and 82 from Orbit 6932 in which the daytime 

ITPR temperatures were approximately 4C cooler than the estimated shelter 

temperatures. It should be noted that data point 81 occurred over water and 

data point 82 occurred where low and middle broken clouds were reported. On 

the other hand, the largest positive departure occurred at data point 83 

which was overcast with low clouds as determined from surface data. Checks 

of differences between shelter temperatures and radiometer temperatures from 

the 1:2,000,000 mapping showed differences similar to those found for the 

1:10,000,000 data. 
26 
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A second comparison carried out using the ITPR data was that between the 

total precipitable water as determined from the radiosonde data and that 

determined from the ITPR information. Figure 14 shows the results of this 

comparison for the two orbits over the AVE II area. The ITPR sounding 

measurement of precipitable water was lower than that determined from the 

radiosonde data in all cases. There was a general trend for the difference 

to increase as the amount of precipitable water increased, although the 

percentage difference is not greatly different. 

1 2 3 4 5 

RAOB Precipitable Water (Cm) 

Fig. 14. Comparison between precipitable water as determined from 
the Nimbus ITPR Sounder and that measured from RAOB 
soundings. The difference in time between ITPR and RAOB 
soundings was approximately 30 min. 
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6. NIMBUS 5 ITPR COMPARISONS WITH RADICSONDE DATA 

The spatial and temporal coincidence of the Nimbus 5 ITPR soundings 

and the radiosonde soundings during the AVE II period.provided an excel- 

lent opportunity to compare temperature soundings from the two sources. 

The ITPR soundings used were those derived from the combination of the 

Nimbus 5 ITPR, NEMS, and SCR experiments using regression equations relat- 

ing temperatures to radiances. One of the six soundings in each orbit, 

however, consisted of an abbreviated solution using only the NEMS and SCR 

inputs. 

For all practical purposes, the ITPR and RAOB observations used in 

this comparison were obtained at the same time. Although spatial separa- 

tion between the two data sets were small, additional data interpolation 

for pressure surfaces corresponding to the levels at which ITPR tempera- 

tures were determined was performed and used in the actual temperature 

comparisons. In all cases, the interpolation processes brought the radio- 

sonde temperature closer to the satellite sounding value. 

The Nimbus 5 orbital tracks which passed over the AVE II observation 

area are illustrated in Fig. 15. Both orbits passed over the central 

United States with Orbit 6932 crossing at midday, 1711-1717 GMT on 11 May 

1974, while Orbit 6939 crossed the area near midnight, 0613-0619 GMT on 

12 May 1974. The ITPR sounding points lie along the solid line with 

individual soundings numbered as in the solution output furnished by NASA. 

The rawinsonde stations used in the comparisons are indicated with X's 

on the track charts and are connected with a dashed line. 

Temperature profiles from the ITPR, the nearest radiosonde, and radio- 

sonde soundings interpolated to the ITPR sounding points are illustrated 

in Figs. 16 and 17 for Orbits 6932 and 6939, respectively. There is of 

course, significant detail in the individual soundings which is lost in 

the ITPR soundings as well as in the interpolated radiosonde soundings. 

Although such detail is important, it is below the resolution possibilities 

of the ITPR sounder. In this study we are concerned with features and 

temperature differences which are within the resolution possibilities of 

the ITPR sounder. Temperature comparisons at ITPR data levels are made 

with the vertically smoothed and horizontally interpolated radiosonde 

temperature profiles. 

Radiometrically determined horizontal temperature distributions over 
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Fig. 15. Nimbus 5 orbital tracks over the AVE II area. 
6932 at 1711-1717 GMT on 11 May 1974. 
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Fig. 16. Temperature profiles at individual sounding points within the AVE II network on 11 May 1974. Satellite 
profiles were taken at approximately 1715 GMT. 
83 which was a Solution 2 profile. 

All are Solution 3 profiles with the exception of sounding 
RAOB profiles were taken at 1800 GMT. 

were determined by interpolation from surrounding stations. 
.Estimated radiosonde profiles 



W 
hl 

I 

I 

I 

c 

I 

I 

I 

I 

I 

. 

I 

. 

I 

Fig. 17; Temperature profiles at individual sounding points within the AVE II network on 12 May 1974. Satellite 

profiles were taken at approximately 0615 GMT. All are Solution 3 profiles with the exception of sounding 
105 which was a Solution 2 profile. RAOB profiles were taken at 0600 GMT. Estimated radiosonde profiles 

were determined by interpolation from surrounding stations. 



one degree latitude-longitude boxes centered on the individual ITPR data 

points are presented in Figs. 18 and 19. The temperature fields were 

constructed from the 1:2,000,000 grid print maps using the 11.5 micro- 

meter channel of the THIR experiment. The THIR temperature fields about 

the ITPR data points takenon Orbit 6932 reveal that at four of the points 

temperatures were essentially surface values, although there was generally 

at least a three degree.temperature variation over the field near the 

data points. Two of the ITPR soundings occurred in the vicinity of 

significant clouds. Data point 83, one of the abbreviated solutions, 

occurred where the effective cloud-top temperature in the THIR data 

corresponded approximately to a pressure of 330 mb. The ITPR profile 

solution for effective cloud amount placed 1% cloud cover at 700 mb, 9% 

at 500 mb, and 58% at 300 mb. Data point 86 was taken in an area where 

the effective THIR cloud-top temperature corresponded to that near 730 mb 

on the rawinsonde sounding. The ITPR effective cloud amounts for the same 

point totaled 19% at 850 mb, 44% at 700 mb, and 6% at 500 mb. 

The THIR temperature fields about the ITPR data points on Orbit 6939 

are presented in Fig. 19. Four of the six ITPR points Qere taken in 

areas where the THIR temperature field indicated either clear skies or 

relatively low cloud conditions. Two of the data points occurred in 

areas of significant cloud cover. On the basis of the THIR temperature 

field, the effective cloud-top temperature at sounding point 101 corre- 

sponds to that at approximately 580 mb. For this same data point, the 

ITPR solutions for clouds specified an 18% cloud cover at 500 mb, and a 

12% cover at 300 mb. At ITPR data point 102, the THIR temperature field 

indicated the top of the cloud cover near 750 mb where the ITPR solution 

indicated a coverage of 16% at 850 mb, 30% at 700 mb, 13% at 500 mb, and 

5% at 400 mb. In the ITPR solutions, two of the data points, which had 

good agreement between ITPR surface temperatures and THIR temperatures, 

indicated significant cloud amounts in the profile solution. At point 

104, where the difference between THIR and ITPR surface temperatures was 

less than 2O, clouds in the amount of 11% at 850 mb, 1% at 700 mb, 15% 

at 500 mb, 6% at 400 mb, and 1% at 300 mb were determined from the ITPR 

profile. At data point 106 where the difference.between THIR and ITPR 

surface temperature was about one degree, clouds in the amount of 1% at 

700 mb, 1% at 300 mb, 24% at 250 mb, and 9% at 200 mb were determined 

from the ITPR profile solution. 
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Fig. 18. !lXIR 11.5 micrometer temperature field from the 1:2,000,000 grid print maps.for one degree 
latitude-longitude boxes about the bounding points on Orbit 6932. ITPR surface temperatures 

are given for the ITPR data point within each box. 
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Fig. 19. THIR 11.5 micrometer temperature field from the 1:2,000,000 grid print mape for one degree 
latitude-longitude boxee about.the ITPR sounding points on Orbit 6939. ITPR surface tempera 
tures are given for the ITPR data point within each box. 



Prior to comparing ITPR and radiosonde temperatures, the degree of 

comparison which might be expected under the conditions present is examined. 

In an actual comparison between ITPR and RAOB temperature profiles, some ' 

difference between the two profiles should be expected due to measurement 

errors in each technique. Results of error analyses carried out in the 

1960's for the RAOB temperature data indicated errors from 0.7V (Case, 

1962) to 1.4“C (Hodge and Hannantas, 1965). Based on this information, 

Fuelberg (1974) assigned a realistic error of l°C to the AVE II tempera- 

ture data. Studies by Lenhard (1970, 1973), however, indicate that the 

current temperature measuring system in the RAOB instrument package is 

capable of much greater accuracy than indicated in the earlier studies. 

This more recent work indicates RMS errors in the temperature data of 

approximately 0.2OC. Lenhard attributes the much smaller error found in 

the more recent evaluations to improved instrumentation. 

Regardless of the actual sensor accuracy, the spatial separation 

between comparison points, in this case the RAOB and ITPR data points, 

will influence the observed differences between the two observation tech- 

niques. During AVE II, the RAOB and ITPR soundings were separated by at 

least 100 km. To improve the chances of a reasonable comparison, the 

RAOB data were interpolated to the satellite sounding points. Although 

this should.minimize the problem of spatial separation between the two 

data sources, the total effect of the separation is probably not eliminated. 

In an effort to better understand the significance of differences between 

the RAOB and ITPR profiles due to spatial temperature differences, data 

from five NSSL rawinsonde st.ations in Oklahoma were analyzed. These 

stations are separated by distances ranging from 42 km to 108 km. Although 

such a comparison will not give an estimate of instrument error, it will 

provide a numerical value for difference or error possibility when making 

data comparisons where the two comparison points are separated by small 

but uncertain distances. Such an evaluation includes both sensor error 

as well as spatial variation. Under normal conditions we would expect 

the spatial variation to change with synoptic situation and pressure 

level. In the case of the Oklahoma stations, the mean spatial separation 

of the stations was approximately 65 km or about one half a degree of 

latitude. 

Layer thickness and differences in thickness (m km -1 1 between stations 
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corresponding to pressure intervals in the ITPR soundings were deter- 

mined rather than evaluating specific temperature values and differences 

between stations. The resultant mean thickness differences for all the 

NSSL stations through the AVE II period are shown in Table 1. The dif- 

ferences in thickness ranged from 5.5 m km -1 in the lOOO-920-mb layer 
11 to 2.3 m km in the 400-300-mb layer. The comparatively large difference 

at low levels is probably due to greater spatial variation of temperature, 

a feature which may be inferred by examining the synoptic charts shown 

in Figs. 1 and 3. The corresponding temperature difference required to 

provide the observed thickness differences are also shown in Table 1. 

These values range from 1.6V near the surface to 0.5'C in the 400-300-mb 

layer. 

Table 1. Mean layer thickness differences and corresponding mean tempera- 
ture differences between the NSSL Oklahoma stations during the 
AVE II period. The average station spacing was 65 km. 

-- ---- 

Pressure Interval Observed Thickness Corresponding Mean 
Differences Temperature Difference 

1000-920 mb 5.5 m km -1 1.6'C km -1 

920-850 5.5 1.5 

850-700 3.1 .9 

700-500 4.6 1.2 

500-400 2.5 .6 

400-300 2.3 .5 

300-250 3.0 .7 

250-200 3.1 .7 

200-150 3.1 .7 

150-100 n-b 3.1 m km -1 .7OC km -1 

Errors associated with the ITPR sounding system are basically associ- 

ated with the regression coefficients used in the minimum information 

solution of the profile radiance values measured by the sounding system. 

Retrieved ITPR temperature profiles would be fairly good as long as more 

or less ideal conditions are present, i.e. clear sky, prescribed atmo- 

spheric gas composition, and climatological means which closely approximate 

the conditions actually present at the time of the ITPR sounding. Such 

ideal conditions are not frequently present so that a certain amount of 

error is induced into the ITPR temperature profiles due to nonrepresentative 
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regression coefficients used to retrieve the temperature profile. The 

estimated RMS temperature error for a NEMS+SCR+ITPR derived profile of 

temperature as a result of regression coefficient errors for the layers 

used in this study was taken from Smith et al. (1974) and is presented -- 
in the second column of Table 2. This temperature error is associated . 
with a corresponding thickness error which is illustrated in the third 

column of Table 2. Using the mean thickness difference found in the 

NSSL data as an estimate of the RMS thickness error due to interpolation 

of the RAOB data to the ITPR data points, a hypothetical combined error 

or difference in thickness between the ITPR- and RAOB-derived values at 

what is supposed to be the same point is illustrated in the fourth column 

of Table 2 (RMS of Cal. 2, Table 1, and Col. 3, Table 2). The error in 

temperature associated with the thickness error or difference is presented 

in the fifth column of Table 2. This last column, the combined tempera- 

ture error, presents an estimate of temperature difference between RAOB 

and ITPR values. 

Table 2. Thickness and mean layer temperature error resulting from a 
combined error in the ITPR reduction method and the RAOB error. 

Pressure ITPR Temperature Thickness Combined Combined Mean 
Interval Error CRMS) due to Error Based RAOB and Temperature 

Regression Analysis on RMS Errors ITPR Error Error 
(30-60'N) in ITPR 

Smith et al. (1974) Temperatures -- 

1000-920 n-b 1.9OC 

920-850 2.0 

850-700 1.9 

700-500 1.4 

500-400 1.4 

400-300 1.7 

300-250 1.8 

250-200 1.9 

200-150 1.8 

150-100 mb 1.6'C 

6.6 m km -1 

7.1 

6.7 

5.4 

5.5 

7.0 

8.0 

8.5 

8.3 
7.1 m km -1 

8.6 m km -1 

9.0 

7.4 

7.1 

6.0 

7.4 

8.5 

9.0 

8.8 
7.8 m km -1 

2.5"C 

2.5 

2.0 

1.8 

1.5 

1.7 

1.9 

2.0 

1 .,9 

1.7OC 

Figure 20 presents the differences in calculated thicknesses 

between the ITPR sounding data and the interpolated rawinsonde data. In 

general, the thickness difference is greatest at low and upper heights 

with a minimum difference in the mid-troposphere. A thickness error of 
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5mkm -1 in these diagrams corresponds to an error in mean temperature 

of about 1.24OC, the exact amount depending on the pressure. This is 

slightly less than the difference given in Table 2 between 500 and 400 mb. 

In most instances a thickness difference approaching 10 m km -1 would be 

necessary before the difference exceeded that which might be expected due 

to the errors illustrated in Table 2. For convenience the combined 

-CB-ITPR error extreme (listed in Table 2 for the combined error) 

is superimposed upon individual thickness difference curves in Fig- 20 

for the ITPR sounding points on the two orbits. It should be remembered 

when comparing the curves that the error curves contain the influence of 

horizontal temperature gradients present in the Oklahoma network. 

The differences between interpolated radiosonde profiles and the ITPR 

profiles shown in Fig. 16 for Orbit 6932 are presented in cross section 

form in Fig. 21. These differences result from error in the ITPR system, 

different degrees of vertical smoothing, errors in radiosonde data, and 

interpolation errors. It should be recalled that there is an inherent 

difference between radiosonde and ITPR profiles on the order of 2OC 

(see Table 2). 

Figure 21 reveals an apparent dependence on pressure of the difference 

of the ITPR and RAOB data, with the maximum difference occurring near 

200 mb in the vicinity of the tropopause. Radiosonde temperatures in 

this area are up to 6OC warmer than the corresponding ITPR temperatures. 

Near the surface, during this daytime orbit, there is a pronounced area 

where the ITPR temperatures are warmer than the RAOB temperatures. In 

the mid troposphere, the differences are relatively small. The distri- 

bution of temperature differences versus height illustrated in Fig. 21 

bears at least a partial relationship in relative magnitudes to that 

expected on the basis of Table 2. 

In the vicinity of data points 82 and 83 some rather significant 

ITPR-RAOB temperature differences are present wh!ich vary significantly 

along the pressure surfaces. The sounding generated at point 83 con- 

sisted of the NEMS and SCR data only (Solution 2 profile), and as such 

is of a different nature than the other profiles in the cross section. 

The maximum difference between this profile and the corresponding RAOB 

profile occurs near 300 mb and is negative (radiosonde temperature warmer 

than the ITPR temperature) while a maximum difference of opposite sign 
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occurs at approximately 150 mb in the same profile. Comparison of the 

cloud-top temperatures in this area, Fig. 18, with the temperature pro- 

files, Fig. 16, reveals that the cloud tops must have been at about 

300 mb. The ITPR sounding at data point 82 also contains a maximum and 

minimum temperature difference near and above 300 mb with the maximum 

positive difference (ITPR temperature warmer than radiosonde temperature) 

at the same level as the maximum negative value at data point 83. The 

THIR temperature field about this point in Fig. 16 indicates that, at 

least on the basis of these temperatures, this maximum positive difference 

occurs well above the cloud tops, which are probably near 900 mb. 

Figure 22 provides some additional insight into possible contributing 

factors toward the temperature differences. Although the ITPR cloud 

amounts are not meant to specifically represent actual cloud amounts, it 

is of interest to note in Fig. 22~ that the amount of cloud calculated 

from the satellite profile over point 82 was on the order of 32% at 

300 mb and 22% at 400 mb. On the basis of the measured relative humidity 

by the corresponding radiosonde sounding (Fig. 22b), these satellite 

interpreted cloud amounts seem high. Likewise, near the surface (900 mb), 

ITPR cloud amounts are almost negligible while surface reports and RAOB 

humidities indicate an overcast near 900 mb. On the other hand, cloud 

amounts over data point 83 were estimated as 58% in the ITPR data at 300 mb 

and on the basis of radiosonde relative humidity, Fig. 22b, and THIR 

cloud-top temperatures, this seems to be a reasonable amount for that 

level. The radiosonde also indicated a significant cloud cover near 

900 mb at station 83 which was not indicated in the satellite data. Near 

the tropopause, maximum negative temperature differences usually occurred 

in regions where the vertical increase of atmospheric stability was the 

greatest. This can be seen by comparing Fig. 22a with Fig. 21. These 

two figures also show that negative temperature differences tended to 

follow the stable zone. The region of positive temperature differences 

near the surface across the interval from point 83 to point 85 seems to 

be associated with the clear sky conditions in that area. The tendency 

for the ITPR surface temperature calculations in the sunlight orbit to 

be warmer than the actual surface by approximately 4'C as shown in 

Fig. 11, seems also to be reflected in the temperature profile. 

Finally, with respect to Orbit 6932, it should be noted that cloud 

amounts on the order of 44% at 700 mb were estimated from the ITPR data 

I 
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at data point 86. At this location a saturated layer near 700 mb was 

observed in the RAOB data, surface reports of middle broken clouds were 

present, and mean cloud-top temperatures based on the THIR data near 700 

mb were determined. Correspondingly, there is almost no difference 

between the ITPR temperature data and the RAOB data. It is also of 

interest to note that data point 86 is essentially in a region where one 

cloud layer existed while data point 83 appears to have multiple layers 

of clouds in its vicinity. Data point 82 has a misplaced cloud layer in 

the ITPR data. 

The differences between the interpolated radiosonde temperature pro- 

files and the ITPR temperature profiles presented in Fig. 17 for Orbit 

6939 on 12 May 1974 are shown in Fig. 23 in cross section form along the 

orbital track through the AVE II network. As was previously the case, 

differences between ITPR and RAOB temperatures were pressure dependent. 

A comparison between the difference patterns during Orbit 6932 (Fig. 211, 

and Orbit 6939 (Fig. 231, reveals similarities but also some significant 

differences. First of all, in the vicinity of the tropopause, above 

300 mb, the tendency is for radiosonde temperatures to be warmer than the 

ITPR temperatures in both cross sections. In the mid troposphere, how- 

ever, there is a significant region where a positive difference is present 

from simple reduction and comparison errors. In Fig. 23 near the surface, 

an extensive region along the track has appreciable negative temperature 

difference, i.e. radiosonde temperatures warmer than ITPR temperatures, 

rather than colder as in Fig. 21. 

At the time Orbit 6939 cut through the AVE II area, the frontal system 

had moved to the Texas coast, and in the orbital cross section the front 

was located near the ground over location 106 and sloped upward to the 

tropopause over location 103. This is reflected in the stability 

analysis shown in Fig. 24a. Humidity values determined from the radio- 

sonde information along the orbital track (Fig. 24b) indicate a zone of 

maximum humidity in the cross section at approximately 700 mb which 

extends from the southern end (right side of the diagram) to the central 

portion of the cross section. Between locations 103 and 102 a humidity 

maximum extends upward to 300 mb with a maximum in the cross section 

extending to the northern end in the 700-900-mb layer. The pattern of 

ITPR estimated cloud amounts shown in Fig. 24c departs considerably from 
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that which would be expected from other data. On the basis of THIR 
temperatures (Fig. 19) and the radiosonde soundings (Fig. 17) the cloud 

tops should be at about 600 mb over location 101, decreasing to approxi- 

mately 800 mb over location 104, and remaining at approximately that 

level to location 106 at the southern end. Actually, cloud reports from 

the surface shown at the bottom of Fig. 24 indicate that there is a region 

near location 105 where it is clear. In this cloud depiction, the only 
points where ITPR cloud maximums and indications of clouds from other 

sources coincide are over location 102 at 700 mb and over location 104 

at 850 mb. 

Comparison of the temperature differences in Fig. 23 with other 

features in the cross section shown in Fig. 24 reveals that over locations 

105 and 106, the negative temperature differences take place in the area 

of maximum stability increase with height as was the case in Orbit 6932. 

On the other side of the cross section, over locations 101 and 103, how- 

ever, there is a positive temperature anomaly in the area where the 

stability increases rapidly with height. Figures 24b and 24c show that 

this positive anomaly occurs near a region where there is a large vertical 

gradient of relative humidity and implied ITPR cloud amounts. It. should be 

recalled that a similar temperature difference occurred above location 

82 in Orbit 6932 under a similar condition. The large area of positive 

differences between the ITPR and the RAOB data at 600 to 700 mb in the 

cross section for Orbit 6939 can be attributed almost entirely to the 

sounding at location 105. Unfortunately, this sounding, as was sounding 

82 in Orbit 6939, is a Solution 2 profile (NEMS+SCR) while all others 

were Solution 3 profiles (ITPR+NEMS+SCR). 

The remaining significant feature in the difference field illustrated 

in Fig. 23 is the extensive band from 850 to 920 mb of negative tempera- 

ture differences in which the ITPR temperatures are colder than the RAOB 

temperatures which extend along the entire cross section. It should be 

recalled that comparisons between ITPR as well as THIR surface tempera- 

tures and shelter temperatures on the nighttime Orbit 6939, and presented 

in Fig. 13, indicated that radiometer temperatures tended to be colder 

than the shelter temperatures by 3-5°C. That this cold radiometer 

temperature anomaly influenced the lower-level temperatures seems apparent 

in at least this collection of ITPR soundings. 
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Temperature differences between the ITPR solutions and the RAOB 

temperature data, as evaluated in this study for the two orbits crossing 

through the AVE II area, appear to be related to such factors as surface 

temperature determinations which produced radiometer temperatures signifi- 

cantly different than corresponding shelter temperatures, significant 

changes in lapse rate in the upper troposphere which were not reproduced 

in the ITPR profiles, and the cloud contamination problem. 

So far, the ITPR soundings have been examined spatially along cross 

sections. For comparison with other studies, as well as the initial 

error analysis in this study, it is informative to examine the mean value 

of the difference at specific levels. Two types of error will be presented. 

In general, an absolute value of the differences between the ITPR and the 

RAOB data will be discussed. For some comparison purposes it is advan- 

tageous to present standard deviations of differences. Although the 

sample size is extremely small in this study, 6 data points at individual 

levels on eadh cross section, a standard deviation of differences in 

temperature for levels and layers is presented. Table 3 illustrates the 

mean of the absolute value of the difference in RAOB and ITPR temperatures 

as well as standard deviations present at the individual ITPR levels in 

both orbits. Although there are specific differences between the two 

Table 3. Means of the absolute value of the radiosonde minus ITPR tem- 
perature (TRAOB - TsAT) differences at the temperature levels 
in the ITPR data. The standard deviation (GD) of the difference 
in temperature is also presented for each layer. Data are 
shown for the two individual orbits and for both orbits taken 
together. 

Level 6932 6939 6932 & 6939 Combined 

ITRAOB-TSAT' CD lTRAOB-TSAT' fi lTRAOB-TSAT' 6D 

920 mb 1.9OC 2.3"C 4.0°c 4.5OC 

850 1.8 2.1 2.9 3.2 2.4 2.7 

700 0.8 0.8 1.8 2.5 1.3 1.9 

500 0.9 1.4 1.4 1.6 1.2 1.5 

400 1.5 2.1 1.2 1.4 1.4 1.8 

2.3 

2.8 

200 3.5 3.6 2.3 2.4 2.9 3.1 

150 2.3 2.8 1.8 2.2 2.1 2.5 

100 mb 1.5OC 2.1°C 1.5oc 1.5oc 1.5OC 1.8'C 
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orbits, an average diff.erence for both orbits, level by level, has a 

systematic variation with pressure. At the lowest level, 920 mb, the 

temperature difference is a maximum (3.0°C) and decreases to a minimum 

(1.2OC) at 500 mb. There is a gradual increase in the mean difference up 

to 200 mb followed by a slight decrease at 100 mb. In general, the com- 

parison between the ITPR temperature values and the interpolated radio- 

sonde soundings is quite good, particularly in the mid-troposphere. 

In addition to the differences in the layer thickness between the 

ITPR and RAOB data and the layer mean temperatures presented in Table 2, 

the layer differences in mean temperature are presented in Table 4. 

The mean temperature error or differences expected in the comparisons due 

to the error in determining the regression coefficients in the ITPR 

solution as well as the error in the RAOB temperatures are combined and 

presented in the second column. The layers are those between standard 

ITPR temperature levels. The third column in Table 4 presents the mean 

of the absolute value of the layer differences observed in the data from 

Table 4. A comparison of the differences between the RAOB and ITPR tempera- 
tures. Mean layer temperatures were determined from the combined 
"error" in interpolating the RAOB data to the ITPR sounding lo- 
cation, as well as instrument and reduction error, and the ITPR 
regression analysis error (Table 2, Col. 5) with mean differences 
and standard deviations of differences,bD, (from Table 3, Col. 5 
and 6) observed in Orbits 6932 and 6939. Standard deviations 
of'ITPR and RAOB difference found by Smith and Woolf (1974) 
have been determined for comparable layers used here and are 
illustrated in the last column. 

_- ---_ .~ 
Layer Expected Error 6932-6939 Smith and Woolf (1974) 

due to the . 
ITPR Solution ~~~~~~~~~~~ cD 

and RAOB Errors 

920-850 mb 2.5OC 2.7V 3.1°C 2.3'C 

850-700 2.0 1.9 1.8 2.1 

700-500 1.8 1.3 1.4 1.6 

500-400 1.5 1.3 1.5 1.9 

400-300 1.7 1.6 2.2 2.2 

300-250 1.9 2.4 2.9 3.1 

250-200 2.0 2.9 3.0 3.6 

200-150 1.9 2.5 2.7 3.5 

150-100 II& 1.7oc 1.8OC 1.8Oc 3.7oc 
- 
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Orbits 6932 and 6939 over the AVE II area. It is of particular interest 

to note that the expected error or difference and the observed differences 

are practically the same up to the 300-250-mb layer. In the region near 

the tropopause, the observed difference is slightly greater than the 

expected error. This would indicate that in the mean, the ITPR soundings 

are about as good as could be expected with the present reduction system. 

The standard deviation of the layer mean temperatures estimated from 

results of Smith and Woolf (1974) are given in the fifth column of Table 

4. In general these deviations are slightly greater than the mean 

temperature differences found in this study. This should not be entirely 

unexpected since the temporal as well as spatial separation between the 

ITPR and RAOB soundings were less in this study. 
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7. SATELLITE-DERIVED CROSS SECTIONS OF WIND 

The temperature soundings obtained from the ITPR sounder provide infor- 

mation which enables the determination of the geostrophic wind component 

normal to the orbital track. This is accomplished using the thermal wind 

equation 

v’ p2 -f 
t 

= Gggp2) -k(pl) = z Rny 
1 

( VD& (1) 

In the case of the ITPR data, the pressure surfaces Pl and P2 where 

p1'p2 are determined by the vertical data spacing in the soundings.. 

The horizontal temperature gradient is evaluated in the plane of the- 

orbital track. In the temperature solutions for Orbits 6932 and 6939, 

the layers used were 920-850 mb, 850-700 mb, 700-500 mb, 500-300 mb, ' 

300-250 mb, 250-200 mb, 200-150 mb, and 150-100 mb. The mean tempera- 

tures for the layers were determined by taking averages at the base and 

top of each layer. The horizontal gradients of the mean temperatures 

were determined between successive soundings along the orbital track, and 

subsequently a layer thermal wind was computed between each pair of 

pressure levels up to 100 mb. In the two cases treated here, a compo- 

nent qeostrophic wind cross section along the United States portion of 

the two orbital tracks is developed using the measured 500-mb wind 

component normal to the cross section as a tie-on wind. 
Three problems arise in the application of the above wind computation 

technique. First, the geostrophic wind and the actual wind may not be 

the same; second, errors in the temperature and consequently the tempera- 

ture gradient will induce errors in the computed qeostrophic wind; and 

third, a tie-on wind may not be known. The first problem, qeostrophic 

versus actual wind values, is a classic problem and will be treated later. 

The question of a representative tie-on wind in areas where satellite- 

derived winds are the only data source can possibly be solved using wind 

values derived from cloud motion vectors and assigned a height corre- 

sponding to cloud temperature. The second problem, wind error induced 

by temperature gradients incorrectly determined from the ITPR data, can 

be examined for the two orbits under discussion by making use of data on 

temperature differences presented in the previous section. 

From the thermal wind equation, errors in the thermal wind normal to 

the cross section due to errors in the cross section horizontal temperature 
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gradient between two levels can be specified by 

AVt(n) 
p1 alAT) =:L$-- 

2 as 
(2) 

where AV t(n) 
is the error in the thermal wind normal to the cross section 

resulting from an error in the mean temperature gradient a (AT) -where S is 
as 

defined as positive toward the south and is distance measured in the sec- 

tion. The magnitude of the error in the computed qeostrophic wind from 

a thermal wind error induced by a one degree error in the temperature 

gradient is presented in Table 5. In this table, the error in the thermal 

wind between successive ITPR data layers in presented. If the wind is 

assumed to be known at 500 mb, an error in the geostrophic.wind at any 

other level will be the sum of the individual layer thermal wind errors 

from 500 mb to any other level. In the case of an error of l°C over four 

degrees of latitude, an error of almost 7 m s -1 will result in the qeo- 

strophic wind at 200 mb. If the qeostrophic wind had been built up from 

the lowest level (920 mb), this error would have been 11.62 m s -I, the 

sum of the qeostrophic wind error at 200 and 920 mb, or about 23 kts. An 

error of 2OC over four degrees of latitude would double the errors in Table 5. 

Table 5. Induced thermal wind error and corresponding error in the qeo- 
styophic wind due to an error in the layer horizontal tempera- 
ture gradient of 1°C/401at. The 500-mb level is assumed to be 
the level that the wind field is developed from. 

Pressure Level (mb) Thermal Wind (m s -1 ) Geostrophic Wind (m s -1 ) 
error error 

100 

150 

200 

250 

300 

400 

500 

700 

850 

920 

3.09 

2.19 

1.70 

1.39 

2.19 

1.70 

2.56 

1.48 

0.60 

12.26 

9.17 

6.98 

5.28 

3.89 

1.70 

0.00 

2.56 

4.04 

4.64 
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When errors in the temperature gradient are evaluated, a measure of 

the expected geostrophic wind error can be determined. Since in this 

study there is no assurance that the RAOB values of temperature are at the 

exact point of the ITPR data, the differences between the ITPR and RAOB 

gradients and qeostrophic winds will be discussed rather than specific 

errors in the ITPR derived data. Although Toqstad and Horn (1974) have 

shown that a gradient distance of 2"lat produces the optimum qeostrophic 

wind field, ITPR sounding point spacings during AVE II do not permit the 

evaluation of the gradient over such short intervals. Since the average 

ITPR spacing is approximately 4Olat in this study, this distance will be 

used for gradient evaluation. Such a distance should produce a qeostro- 

phic wind field which approximates the wind field deduced from standard 

rawinsonde station spacing. The differences in temperature gradient as 

a result of differences between the RAOB and ITPR temperatures at sounding 

points are presented for Orbit 6932 in the cross section shown in Fig. 25 

using a uniform interval of 4Olat. Gradient differences are relatively 

large at the tropopause level as well as near the surface, reaching 6“C 

between data points 82 and 83. This particular large difference, however, 

is induced by the solution profile of the data set and is probably not 

representative of what would have been found if all Solution 3 profiles 

had been available. There are other areas in the cross section where 

gradient differences as large as 4OC are found. 

The differences between ITPR-and RAOB-derived qeostrophic winds 

resulting from the temperature gradient differences in the cross section 

of Orbit 6932 are presented in Fig. 26. The maximum difference between 

qeostrophic wind normal to the cross section occurs near 300 mb where 

the difference reaches a magnitude of 20 m s . -1 Since the sign of the 

temperature gradient difference changes with height across most of the 

cross section, the qeostrophic wind difference usually increases to some 

maximum value'and subsequently decreases. 

If, as was the case in the preceding example, the distance over 

which the gradient is determined is not an optimum distance but a distance 

specified by sounding spacing along the orbital track, a slightly different 

difference distribution will result. Figure 27 illustrates the expected 

difference in the qeostrophic wind if the thermal gradient had been 

evaluated between ITPR locations. Although the general pattern is similar 

to the difference pattern presented in Fig. 26, the relative positions 

of the maximum values as well as the values themselves have changed. 
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Fig. 25. Differences between satellite-derived horizontal temperature gradient ("C/lc"lat) 
and RAOB temperature gradient at 1800 GMT, 11 May 1974, induced by differences 
at the individual sounding points along Orbit 6932. 
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Fig. 26. Difference (V~OR - VSAT) in the component geostrophic wind (m s -1 
) normal to the 

Orbit 6932 cross section as a result of the difference between the satellite and 
MOB-derived horizontal temperature gradient evaluated over a uniform interval of 
4"lat. The 500-mb level was used as the tie-on level for the thermal wind buildup. 



1oc 

60( 

7ot 

80( 

90( 

loot 

r 

)- 

m 

1’ 

I- 

I- 

1 

1 

I 

1 

1 

1 

u3 I)4 63 
Satellite Sounding Location 

553 456 340 
Rawinsonde Station 

82 81 

240 232 

Fig. 27. cioffereyFe (VaoB - VSAT) in the component geostrophic wind (m s-l) normal to the 
Urbit by32 cross section as a result of the difference between the satellite and 
RAOB-derived horizontal temperature gradient using actual sounding point separation 
as the distance over which gradients were evaluated. The 500-mb Level was used 
as the tie-on Level for the thermal wind buildup. 



The differences in temperature gradient along the cross section of 

Orbit 6939 evaluated from the temperature difference distribution shown 

in Fig. 23 are presented in Fig. 28. Again, as was the case in Orbit 6932, 

a Solution 2 profile existed within the cross section at data pair., 105. 

This time, however, the associated differences were not as serious as in 

Orbit 6932 and the differences in gradient are not as localized. In the 

middle troposphere and lower stratosphere, the maximum difference between 

the temperature gradients evaluated from the ITPR and RAOB information 

over 4Olat were.on the order of 2OC, and for the most part less, while in 

the lower troposphere gradient differences reached slightly in excess of 

4V/4Olat. The corresponding difference in the wind field, when built 

up and down from the 500~mb surface, is presented in Fig. 29. Above 

600 mb the maximum difference was 4.4 m s -1 in tne upper troposphere. 

Below 600 mb the qeostrophic wind difference becomes quite large, reflecting 

the large gradient differences presented in Fig. 28. 

Again, if the gradient is evaluated between ITPR locations rather 

than using a uniform distance of 4Olat, a different qeostrophic wind 

difference field is produced. As can be seen in Fig. 30 for Orbit 6939, 

geostrophic differences on the order of 10 m s -1 are present above 200 mb, 

and the area within the cross section where there are differences between 

the correct qeostrophic wind and the erroneous geostrophic wind in excess 

of5ms -1 is quite large. 

The preceding exploration of expected difference in the qeostrophic 

wind as a function of the measured temperature differences and the 

associated difference in the temperature gradient revealed several inter- 

esting features. It is apparent that although the differences in the 

temperature data seem to be pressure dependent, there is a sufficient 

amount of difference variation at the same pressure levels that significant 

errors in a computed qeostrophic wind will result. Although each of the 

orbits examined here had what might be termed a nonrepresentative profile 

in the data set, the fact that it occurred indicates that not all profiles 

within a data set of interest will be as good as desired. 

The fact that in this case , minimum differences in the qeostrophic 

wind occurred in the mid-troposphere is a result of the difference minimum 

in the temperature gradients in this region as well as from choosing the 

500~mb wind as a tie-on wind. A different level of tie-on wind would have 
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Fig. 28. Differences between satellite-derived horizontal temperature gradient ("C/Lc"lat) 
and RAOB temperature gradient at 0600 GMT, 12 May 1974, induced by differences at 
the individual sounding points along Orbit 6939. 
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Fig. 29. Differences (VmOB - VSA~> in the component geostrophic wind (m s'!) normal to the 
Orbit 6939 cross section as a result of the difference between the satellite and 
RAOB-derived horizontal temperature gradients-evaluated over a uniform interval of 
4"lat. The 500-mb level is used as a tie-on level for the thermal wind buildup. 
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changed the magnitudes of the differences but the patterns would have 

remained the same. As was pointed out previously, it would seem that two 

tie-on wind levels determined from cloud motion vectors and cloud levels 

would produce a more optimum solution approach. This could possibly 

minimize the differences developed by successively building from one level. 

It is of interest to compare the geostrophic wind buildups deter- 

mined from the ITPR satellite data and geostrophic wind buildups based on 

the radiosonde data. Using the thermal wind equation to evaluate the 

thermal wind between successive levels and using the 500-mb wind as a tie- 

on wind, a cross section of geostrophic wind normal to the satellite path 

was constructed for each of the two orbits using the radiqsonde temperature 

data interpolated to the satellite sounding points. Figure 31 shows the 

resultant geostrophic wind cross section along Orbit 6932. A maximum wind 

component of 51 m s -1 from the west is present between points 84 and 85 at 

300 mb with another maximum on the southern end of the cross section near 

data point 81. A deep minimum region in the component wind normal to the 

cross section is observed between points 82 and 83. 

The geostrophic wind field normal to the 6932 orbital track derived 

from the ITPR data (including error) is presented in Fig. 32. The striking 

difference between this figure and Fig. 31 is the double maximum in the 

layer of 200-300 mb in the central portion of the cross section. In this 

particular case, the difference between the ITPR and RAOB temperature 

measurements have induced the secondary jet between stations 82 and 83 

with the resulting misleading impression, based on the ITPR data, that 

two cores of maximum wind exist in this region. Within computational 

accuracy, the difference between Figs. 31 and 32. has already been illustrated 

in Fig. 27. 

The geostrophic wind built up using the RAOB data coincident with Orbit 

6939 is presented in Fig. 33. A maximum in the geostrophic wind occurs 

just above 300 mb between data points 103 and 104. The maximum component 

wind is 66.9 m s -1 with the axis of the maximum wind displaced slightly 

north at pressure levels below 700'mb and at 100 mb. At both the northern 

and southern ends of the cross'section, the geostrophic wind normal to 

the cross section'becomes less than 5 m s -1 with a shallow layer of 

eastward components near the surface on the southern end. 

The ITPR data were used to construct a cross section of the component 

of geostrophic wind normal to Orbit 6939. The results are presented in 
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Fig. 31. The geostrophic wind component (m s 
-1 

) normal to the Orbit.6932 cross section as 
determined from the radiosonde temperature data taken at 1800 GMT on 11 May 1974. 
The temperature profiles were interpolated to the position of the ITPR sounding 
point prior to the evaluation of layer temperature gradients. Positive values 
represent west to east flow. 
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Fig. 32. The geostrophic wind component (m s 
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) normal to the Orbit 6932 cross section as 
determined from the temperature profiles determined from the Nimbus 5 ITPR. Layer 
temperature gradients were evaluated between sounding points. 
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Fig. 33. The geostrophic wind component (m s-l) normal to the Orbit 6939 cross section as 
determined from the radiosonde data taken at 0600 GMT on 12 May 1974. The tempera- 
ture profiles were interpolated to the position of the ITPR sounding points prior 
to the evaluation of layer temperature gradients between stations. Positive values 
represent west to east flow. 



Fig. 34. The ITPR-derived.geostrophic wind field for Orbit 6939 shows the 

maximum geostrophic wind component occurring just above 300 mb between 

data points 103 and 104 with a maximum speed of 66 m s -1 . As in the RAOB 

cross section, the wind maximum is displaced northward at high and low 

altitudes. The low-level zone of easterly components also appears in the 

satellite-derived wind; however, it is shifted slightly north of the RAOB 

wind low-level easterlies. In both Figs. 33 and 34 there is a small 

area of easterly winds at 100 mb. The difference between-the wind fields 

in these two figures has already been presented in Fig. 30. 

The differences in the horizontal temperature gradients and the 

resulting differences in the geostrophic wind field within a given cross 

section will vary as a function of the gradient distance used in the 

evaluation. This is particularly true in cases such as have been examined 

here where the spacing of the ITPR data points corresponds to that spacing 

found in a normal radiosonde network. In fact, a noticeable wind difference 

has been shown to take place if actual sounding separation is used rather 

than a uniform distance corresponding. to the mean sounding spacing. For 

this reason it is relatively difficult to place a numerical value on the 

mean gradient differences or wind differences determined from the ITPR 

and RAOB soundings. 

Using the layer mean differences in temperature in individual ITPR 

soundings along the orbital cross section, an indication of the temperature 

gradient differences between bounding pressure values within each cross 

section can be determined. The distances over which the gradient was 

determined, and thus the gradient differences, were allowed to vary as a 

function of the actual distances between ITPR sounding points. ITPR 

stations averaged 3.8Olat apart on Orbit 6932 and 4.5'1at apart on Orbit 

6939. The resulting temperature gradient differences observed between 

pressure levels on each of,the orbits are shown in Table 6. The gradient 

difference data for Orbit 6932 shows a decrease up to the 700-500-mb 

layer followed by an increase at the 400-300~mb layer. The comparatively 

large difference in the temperature gradient at this level is due to large 

differences between the individual ITPR-RAOB profiles of different sign 

at these levels at data points 82 and 83 (see Fig. 16). The variation 

of the differences in the horizontal temperature gradients with height 

listed for Orbit 6939 are probably more representative of what should be 
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Fig. 34. The geostrophic wind component (m s -1 
) normal to Orbit 6939 cross section as 

determined from the temperature profiles determined from the Nimbus 5 ITPR. Layer 
temperature gradients were evaluated between sounding points. 



Table 6. ITPR layer temperature gradient differences (means of absolute 
value) between ITPR and RAOB temperature gradients. The gradient 
distance average was 4“1at, but specific distances were between- 
adjacent ITPR data point. 

Layer Orbit 6932 Orbit 6939 Average Layer 
Gradient Gradient Gradient Thermal 

Difference Difference -Difference Wind Difference 

920-850 mb 2.1°C/3.801at 2.1°C/4.501at 2.1°C/4.201at 1.3 m s -1 

850-700 1.5 2.3 1.7 2.5 

700-500 1.0 1.7 1.4 3;6. 

500-400 1.8 0.9 1.3 2.2 

400-300 3.2 0.8 2.0 4.4 

300-250 2.9 1.4 2.1 2.9 

250-200 1.6 1.3 1.4 2.4 

200~150 3.8 0.9 2.4 5.3 
150-100 mb 3.5OC/3.8Olat 1.2°C/4.501at 2.4OC/4.2Olat 7.5 m s -1 

expected. Here the layer horizontal temperature gradient difference 

decreases to 0.8OC/4.5Olat in the 400-300-mb layer followed by a slight 

increase. The vertical distribution of the temperature gradient in the 

plane of the cross section between layers for both orbits combined is also 

shown in Table 6. There is basically a trend toward minimum horizontal 

gradient differences in the mid-troposphere with a maximum at low and 

high levels. The average gradient distance here is 4.2Olat. Although it 

is tempting to normalize the gradient errors to 4Olat, such a manipulation 

would have little meaning. 

The differences in geostrophic wind which would be present with the 

gradient temperature.differences illustrated would depend on where the 

geostrophic wind buildup began. The thermal wind differences induced by 

the temperature gradient differences in the layers presented in Columns 

2-4 of Table 6 are given in the last column of Table 6 if the gradient 

distance is assumed to be 4Olat. In most layers, the wind difference is 
-1 approximately 3 m s . The geostrophic wind differences at any one layer 

will be the sum of the individual thermal wind differences up to that level. 

A mid-tropospheric tie-on wind will produce a minimum magnitude difference 

at either extreme. A surface tie-on wind will produce a maximum magnitude 

difference at the top of the sounding if the gradient differences are of 
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the same sign throughout the profile. Usually, in individual cross sections, 

the sign of the gradient differences will change at least once in the 

vertical. For this reason, the maximum geostrophic wind difference usually 

occurs at some point below the top of the geostrophic wind profile or 

cross section. 

Comparison of the geostrophic winds derived from the RAOB and ITPR 

cross sections with actual wind components would only be realistically 

possible if the flow in the vicinity of the cross section were straight 

and unaccelerated. In the two cases studied, the cross sections are nearly 

in the trough lines in the synoptic data where neither of the above condi- 

tions is met. In an effort to obtain some comparison with actual winds, 

however, rawinsonde winds normal to the cross sections were adjusted 

through the gradient wind equation to simulate a geostrophic wind field. 

The curvature of the flow was estimated from the contours in the vicinity 

of the cross section axis. This adjustment brought the observed winds 

within fair agreement with the geostrophic winds determined from the 

temperature data within the cross sections. The adjusted wind components 

are presented for 11 May, Orbit 6932, in Fig. 35 and for 12 May, Orbit 

6939, in Fig. 36. In both cases the magnitude and the general pattern 

of the adjusted winds are similar to the geostrophic winds developed from 

the radiosonde temperature data. 
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Fig. 35. Adjusted geostrophic wind component (m s 
-1 

) normal to the orbital plane of Nimbus 5 
Orbit 6932 at 1800 GMT, 11 May 1974. The geostrophic wind component was deduced 
from the actual wind by estimating the streamline curvature and using the gradient 
wind equation. 
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Fig. 36. Adjusted geostrophic wind component (m s 
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) normal to the orbital plane of Nimbus 5 
Orbit 6939 at 0600 GMT, 12 May 1974. The geostrophic wind component was deduced 
from the actual wind by estimating the streamline curvature and using the gradient 
wind equation. 



8. CONCLUSIONS 

The purpose of this study was to examine some of the temperature fields 

derived from the Nimbus 5 THIR'experiment over regions where clouds exist, 

to compare them with radar cloud-top observations, and to examine 

clear sky surface temperatures as determined from the THIR experiment and 

the ITPR experiment and to compare them with shelter temperatures. A 

second and significant portion of this study was to examine the accu- 

racy of the ITPR data, and implicitly the reduction technique, based on 

coincident .radiosonde observations. This accuracy analysis is projected 

into the area of geostrophic wind determinations using the satellite ITPR 

data. From the results of this study the following tentative conclusions 

were deduced: 

1) Temperature mapping from the 11.5 micrometer THIR channel on a 

1:10,000,000 scale produced a drastic smoothing of the temperature field; 
. 

however, cloud-top heights assigned on the basis of temperature still 

agreed well with maximum radar-echo tops in regions of significant clouds. 

2) Use of the 11.5 micron THIR channel on a 1:2,000,000 scale gave 

great detail in the cloud fields but agreement between cold cloud spots 

and radar echoes was only fair. Cloud-top contours using the THIR data 

would require detailed knowledge of the cloud emissivity, particularly 

in areas where cirroform clouds were present over large areas, as well as 

information about the vertical cloud distribution. 

3) Comparisons between surface-shelter temperatures and the 11.5 

micrometer temperatures from the THIR experiment as well as the ITPR- 

derived surface temperatures revealed that the radiometer temperatures 

averaged approximately 9OC warmer in the daytime'and 4'Y colder at night 

than the shelter temperatures. Although the differences were fairly 

uniform with temperature at night, during the daytime a large range of 

differences occurred. This observation remained basically true whether 

temperature data from scales‘of 1:10,000,000 or 1:2,000,.000, or ITPR data 

were used. The differences did decrease, however, going from the 1:10,000,000 

mapping down to the ITPR surface temperature determinations. The differences, 

however, were not unexpected since the air temperatures in the shelter are 

near the ground while the radiometers see the radiating ground surface 

itself. 

4) On the basis of coincident time radiosonde data interpolated to 
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each ITPR sounding, it appears that derived temperature data from the 

Nimbus 5 radiance data is, in the mean, as accurate as would be expected 

on the basis of error in the present reduction technique. Minimum dif- 

ferences occurred from approximately 700 mb to 400 mb in the cases examined 

with the actual differences in this layer less than the standard error 

which would be expected on the basis of the individual errors in the 

reduction and comparison processes. Differences between the ITPR and RAOB 

data above 400 mb probably would have been less in this study than were 

found if all the ITPR profiles had been synthesized from the ITPR+NEMS+SCR 

data. As it was, some significant point differences occurred in the 

profiles where NEMS+SCR profiles were present. 

5) Although temperature differences tended to be height dependent, 

differences at any one pressure level were large enough to induce signi- 

ficant temperature gradient errors in individual cross sections. This 

points out that although the mean difference of a collection of data may 

be small, there are still sufficient differences relating to specific 

features in a given cross section to influence horizontal temperature 

gradient determination. 

6) Differences in temperature gradients on individual cross sections 

can be significant enough to greatly distort synthesized geostrophic wind 

profiles. In-one of the cross sections examined in this study it was 

sufficient to induce a double jet core where none actually existed. Since 

a considerable amount of the major gradient differences occurred where 

abbreviated solutions were required by internal checks, such gradient 

differences and induced erroneous winds are probably likely in areas where 

significant weather exists. 

7) In the cross sections examined in this study, the geostrophic wind 

developed from the ITPR data differed from the geostrophic winds developed 

from the radiosonde temperature data by an amount induced by the differences 

between the ITPR and RAOB data. In these particular cases, this finding 

is essentially required since ITPR spacing along the track was essentially 

the same as is found in the standard radiosonde network. Some significant 

wind differences were found when a fixed gradient distance over which 

temperature gradients were evaluated was used as opposed to gradient 

evaluation over actual station or sounding distances. Specific comparisons 

with actual wind data in the cross section were complicated by the factthat 
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geostrophic winds were computed while actual winds probably more nearly 

resemble gradient winds in their magnitude. Attempts to adjust actual wind 

to geostrophic wind using the gradient approximation indicated that cross- 

section computed geostrophic winds were at least reasonable. 

8) Wind determination from the thermal wind buildup requires a tie- 

on or assumed wind somewhere in the profile. To avoid the accumulation of 

significant wind differences using a single tie-on wind, it seems logical 

to begin the buildup in the mid-troposphere under ideal conditions. In 

actuality, mid-tropospheric winds may not be known. It would seem that wind- 

buildups and builddowns from wind vectors derived from cloud motions might 

possibly provide a worthwhile approach to arrive at a wind profile and 

wind cross section in data sparce areas. 
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